Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Zool A Ecol Integr Physiol ; 337(9-10): 1025-1038, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35927786

RESUMO

The Harderian gland (HG) of Rattus norvegicus is an orbital gland secreting lipids that accumulate in excess under condition of increased lipid metabolism. To study the response elicitated by lipid overload in rat HG, we housed the animals in thermoneutral conditions (28-30°C) in association to high fat diet (HFD). In HFD rats alterated blood lipid levels result in lipid accumulation in HG as demonstrated by the increased gland weight and histochemical/ultrastructural analyses. The HFD-caused oxidative stress forces the gland to trigger antioxidant defense mechanisms and autophagic process, such as lipophagy and mitophagy. Induction of mitochondrial DNA (mtDNA) damage and repair was stronger in HFD-rat HGs. An increase in marker expression levels of mitochondrial biogenesis, fission, and fusion occurred to counteract mtDNA copy number reduction and mitophagy. Therefore, the results demonstrate that rat HG activates autophagy as survival strategy under conditions of increased lipid metabolism and suggest a key role for mitophagy and membrane dynamics in the mitochondrial adaptive response to HFD.


Assuntos
Dieta Hiperlipídica , Glândula de Harder , Ratos , Animais , Dieta Hiperlipídica/efeitos adversos , Glândula de Harder/metabolismo , Autofagia/fisiologia , DNA Mitocondrial/metabolismo , Lipídeos
2.
Artigo em Inglês | MEDLINE | ID: mdl-33155932

RESUMO

BACKGROUND: The KW-2449 is a novel multikinase inhibitor that inhibits FLT3, ABL, ABL-T315I, and Aurora A. FLT3 and Aurora A kinases play an important role in the pathogenesis of multiple sclerosis (MS). KW-2449 could modulate immune cells, but the immunomodulatory effects of KW-2449 on experimental autoimmune encephalomyelitis (EAE) have not been investigated yet. The aim of the present study is to investigate the effects of KW-2449 on EAE mouse model. METHODS: In this study, C57BL/6 EAE mice were orally treated with (10 mg/kg/day) KW-2449 solution and compared with EAE and control mice. Following the treatment, histological analyses were performed on the brain and cerebellum to evaluate the pathological score. The gene expression levels of tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and chemokine (C-C motif) ligand 2 (CCL2) were measured using qRT-PCR. The serum levels of TNF-α, IL-6, CCL-2 and MMP-2 were determined by using quantitative enzyme-linked immunosorbent assay (ELISA). RESULTS: The results indicated that the clinical score, the infiltration of inflammatory cells and the demyelination in EAE mice treated with KW-2449 decreased significantly compared to control groups. KW-2449 also decreased TNF-α, IL-6, CCL-2 inflammatory cytokines, and MMP-2 in both brain mRNA expressions and serum levels of EAE mice. CONCLUSION: The KW-2449, aging as a multi-kinase inhibitor, modulates the inflammatory responses of cytokine cascades either in the brain or in plasma and reduces EAE pathogenesis manifestation.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Indazóis/uso terapêutico , Piperazinas/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Quimiotaxia de Leucócito/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Indazóis/farmacologia , Mediadores da Inflamação/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Piperazinas/farmacologia
3.
J Cell Biochem ; 120(7): 11044-11055, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30762900

RESUMO

Excitatory amino acids (EAAs) are found present in the nervous and reproductive systems of animals. Numerous studies have demonstrated a regulatory role for Glutamate (Glu), d-aspartate ( d-Asp) and N-methyl- d-aspartate (NMDA) in the control of spermatogenesis. EAAs are able to stimulate the Glutamate receptors, including the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Here in, we assess expression of the main AMPAR subunits, GluA1 and GluA2/3, in the mouse testis and in spermatogonial GC-1 cells. The results showed that both GluA1 and GluA2/3 were localized in mouse testis prevalently in spermatogonia. The subunit GluA2/3 was more highly expressed compared with GluA1 in both the testis and the GC-1 cells. Subsequently, GC-1 cells were incubated with medium containing l-Glu, d-Glu, d-Asp or NMDA to determine GluA1 and GluA2/3 expressions. At 30 minutes and 2 hours of incubation, EAA-treated GC-1 cells showed significantly higher expression levels of both GluA1 and GluA2/3. Furthermore, p-extracellular signal-regulated kinase (ERK), p-Akt, proliferating cell nuclear antigen (PCNA), and Aurora B expressions were assayed in l-Glu-, d-Glu-, and NMDA-treated GC-1 cells. At 30 minutes and 2 hours of incubation, treated GC-1 cells showed significantly higher expression levels of p-ERK and p-Akt. A consequent increase of PCNA and Aurora B expressions was induced by l-Glu and NMDA, but not by d-Glu. Our study demonstrates a direct effect of the EAAs on spermatogonial activity. In addition, the increased protein expression levels of GluA1 and GluA2/3 in EAA-treated GC-1 cells suggest that EAAs could activate ERK and Akt pathways through the AMPAR. Finally, the increased PCNA and Aurora B levels may imply an enhanced proliferative activity.

4.
Reprod Biol Endocrinol ; 6: 28, 2008 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-18601714

RESUMO

UNLABELLED: D-Aspartic acid (D-Asp) and nitric oxide (NO) play an important role in tuning testosterone production in the gonads of male vertebrates. In particular, D-Asp promotes either the synthesis or the release of testosterone, whereas NO inhibits it. In this study, we have investigated for the first time in birds the putative effects of D-Asp and NO on testicular testosterone production in relation to two phases of the reproductive cycle of the adult captive wild-strain mallard (Anas platyrhynchos) drake. It is a typical seasonal breeder and its cycle consists of a short reproductive period (RP) in the spring (April-May) and a non reproductive period (NRP) in the summer (July), a time when the gonads are quiescent. The presence and the localization of D-Asp and NO in the testis and the trends of D-Asp, NO and testosterone levels were assessed during the main phases of the bird's reproductive cycle. Furthermore, in vitro experiments revealed the direct effect of exogenously administered D-Asp and NO on testosterone steroidogenesis. METHODS: By using immunohistochemical (IHC) techniques, we studied the presence and the distributional pattern of D-Asp and NO in the testes of RP and NRP drakes. D-Asp levels were evaluated by an enzymatic method, whereas NO content, via nitrite, was assessed using biochemical measurements. Finally, immunoenzymatic techniques determined testicular testosterone levels. RESULTS: IHC analyses revealed the presence of D-Asp and NO in Leydig cells. The distributional pattern of both molecules was in some way correlated to the steroidogenic pathway, which is involved in autocrine testosterone production. Indeed, whereas NO was present only during the NRP, D-Asp was almost exclusively present during the RP. Consistently, the high testosterone testicular content occurring during RP was coupled to a high D-Asp level and a low NO content in the gonad. By contrast, in sexually inactive drakes (NRP), the low testosterone content in the gonad was coupled to a low D-Asp content and to a relatively high NO level. Consequently, to determine the exogenous effects of the two amino acids on testosterone synthesis, we carried out in vitro experiments using testis sections deriving from both the RP and NRP. When testis slices were incubated for 60 or 120 min with D-Asp, testosterone was enhanced, whereas in the presence of L-Arg, a precursor of NO, it was inhibited. CONCLUSION: Our results provide new insights into the involvement of D-Asp and NO in testicular testosterone production in the adult captive wild-strain mallard drake. The localization of these two molecules in the Leydig cells in different periods of the reproductive cycle demonstrates that they play a potential role in regulating local testosterone production.


Assuntos
Ácido D-Aspártico/metabolismo , Óxido Nítrico/metabolismo , Reprodução/fisiologia , Testículo/metabolismo , Testosterona/biossíntese , Animais , Arginina/metabolismo , Arginina/farmacologia , Cruzamento , Ácido D-Aspártico/farmacologia , Patos , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/metabolismo , Reprodução/efeitos dos fármacos , Testículo/citologia , Testículo/efeitos dos fármacos , Testosterona/sangue
5.
J Chem Neuroanat ; 32(2-4): 127-42, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16987635

RESUMO

By means proliferating cell nuclear antigen (PCNA) immunohistochemistry, we have provided a detailed neuroanatomical mapping of proliferative activity during development and adulthood in the frog (Rana esculenta) brain. Western blot analysis confirmed the presence of this protein in brain extracts from adults and tadpoles. Proliferative activity was observed in the ventricular and subventricular zones throughout the brain. The present study provides details as to which of the morphologically distinguishable brain region(s) has a long-lasting proliferative activity and in which region this activity undergoes a progressive decrease during development. In the subventricular zones of the third ventricle, PCNA-labeled cells were particularly abundant in the magnocellular preoptic nucleus and the ventromedial thalamic nucleus. It was observed that proliferation zones are present practically in all major subdivisions of the forebrain, midbrain and hindbrain, including the cerebellum in which PCNA-labeled cells were located in the outer granular layer and the inner molecular layer. The habenulae, epiphysis and isthmic nuclei never showed the presence of PCNA-immunoreactive nuclei. The widespread proliferative activity implies that the frog brain has a great potential for neurogenesis/gliogenesis not only during larval development but also in the adulthood.


Assuntos
Encéfalo/crescimento & desenvolvimento , Proliferação de Células , Neurônios/metabolismo , Antígeno Nuclear de Célula em Proliferação/biossíntese , Rana esculenta/crescimento & desenvolvimento , Células-Tronco/metabolismo , Envelhecimento/fisiologia , Animais , Biomarcadores/metabolismo , Encéfalo/anatomia & histologia , Divisão Celular/fisiologia , Imuno-Histoquímica , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Neuroglia/citologia , Neuroglia/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Rana esculenta/anatomia & histologia , Células-Tronco/citologia
6.
Microsc Res Tech ; 62(5): 439-50, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14601150

RESUMO

The effect of nerve growth factor (NGF) on ontogenesis of frog mast cells was investigated in vivo by histochemical, morphometric, and ultrastructural analysis. Three groups of tadpoles at various stages of development were used. In the first group, the larvae received i.p. injections of 1 ng NGF/g; the second group received 10 ng NGF/g, while the control group received only the vehicle. The first recognizable mast cells arose symmetrically in the tongue at stage 26 of Witschi's standard table. At stages 26 and 29, the mast cell number in the NGF-injected tadpoles was significantly higher than the control group. From stage 29 onward, the mast cell number rapidly increased in all groups. No significant differences in mast cell number were observed between the control group and the NGF-injected groups at stages 31 and 33. Electron microscopy revealed that at metamorphic climax (stage 33), the mast cells in the NGF-treated groups were more mature than those in the control group. Therefore, nerve growth factor at early stages of tadpole development is likely to induce differentiation of mast cell precursors, while at later stages it is likely to induce maturation of immature mast cells. The close anatomical association between mast cells and perineurium, observed during nerve development, is intriguing. Already in the early stages of nerve development, the mast cells form a network around Schwann cell-axon complexes, together with the perineurial cells. At climax, the mast cells are located between the perineurial layers, suggesting that they may play a role in the tissue-nerve barrier of the perineurium. Nerve growth factor also seems to induce perineurial cell maturation.


Assuntos
Imunidade Celular/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Rana esculenta/embriologia , Animais , Imunidade Celular/fisiologia , Imuno-Histoquímica , Larva/efeitos dos fármacos , Larva/imunologia , Larva/ultraestrutura , Mastócitos/fisiologia , Mastócitos/ultraestrutura , Microscopia Eletrônica , Neurônios/ultraestrutura , Nervos Periféricos/ultraestrutura , Língua/embriologia , Língua/imunologia , Língua/inervação , Língua/ultraestrutura
7.
FEBS Lett ; 552(2-3): 193-8, 2003 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-14527686

RESUMO

Probes for the occurrence of endogenous D-aspartic acid (D-Asp) and N-methyl-D-aspartic acid (NMDA) in the neural complex and gonads of a protochordate, the ascidian Ciona intestinalis, have confirmed the presence of these two excitatory amino acids and their involvement in hormonal activity. A hormonal pathway similar to that which occurs in vertebrates has been discovered. In the cerebral ganglion D-Asp is synthesized from L-Asp by an aspartate racemase. Then, D-Asp is transferred through the blood stream into the neural gland where it gives rise to NMDA by means of an NMDA synthase. NMDA, in turn, passes from the neuronal gland into the gonads where it induces the synthesis and release of a gonadotropin-releasing hormone (GnRH). The GnRH in turn modulates the release and synthesis of testosterone and progesterone in the gonads, which are implicated in reproduction.


Assuntos
Ácido Aspártico/fisiologia , Ciona intestinalis/metabolismo , N-Metilaspartato/fisiologia , Animais , Ácido Aspártico/química , Ciona intestinalis/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/fisiologia , Gônadas/metabolismo , Técnicas In Vitro , Hormônios de Invertebrado/química , Hormônios de Invertebrado/fisiologia , Masculino , N-Metilaspartato/química , Sistemas Neurossecretores/fisiologia , Progesterona/biossíntese , Reprodução , Estereoisomerismo , Testosterona/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...